Nanoparticle delivery of chemosensitizers improve chemotherapy efficacy without incurring additional toxicity.
نویسندگان
چکیده
Chemosensitizers can improve the therapeutic index of chemotherapy and overcome treatment resistance. Successful translation of chemosensitizers depends on the development of strategies that can preferentially deliver chemosensitizers to tumors while avoiding normal tissue. We hypothesized that nanoparticle (NP) formulation of chemosensitizers can improve their delivery to tumors which can in turn improve their therapeutic index. To demonstrate the proof of principle of this approach, we engineered NP formulations of two chemosensitizers, the PI3-kindase inhibitor wortmanin (Wtmn) and the PARP inhibitor olaparib. NP Wtmn and NP olaparib were evaluated as chemosensitizers using lung cancer cells and breast cancer cells respectively. We found Wtmn to be an efficient chemosensitizer in all tested lung-cancer cell lines reducing tumor cell growth between 20 and 60% compared to drug alone. NP formulation did not decrease its efficacy in vitro. Olaparib showed less consistent chemosensitization as a free drug or in NP formulation. NP Wtmn was further evaluated as a chemosensitizer using mouse models of lung cancer. We found that NP Wtmn is an effective chemosensitizer and more effective than free Wtmn showing a 32% reduction in tumor growth compared to free Wtmn when given with etoposide. Importantly, NP Wtmn was able to sensitize the multi-drug resistant H69AR cells to etoposide. Additionally, the combination of NP Wtmn and etoposide chemotherapy did not significantly increase toxicity. The present study demonstrates the proof of principle of using NP formulation of chemosensitizing drugs to improve the therapeutic index of chemotherapy.
منابع مشابه
Reversal of chloroquine resistance in Plasmodium falciparum using combinations of chemosensitizers.
Research into chloroquine resistance reversal in Plasmodium falciparum has revealed a widespread range of functionally and structurally diverse chemosensitizers. However, nearly all of these chemosensitizers reverse resistance optimally only at concentrations that are toxic to humans. Verapamil, desipramine, and trifluoperazine were shown to potentiate chloroquine accumulation in a chloroquine-...
متن کاملThe use of nanoparticulate delivery systems in metronomic chemotherapy.
Metronomic chemotherapy aiming at inhibiting tumor angiogenesis with conventional chemotherapeutics is a promising strategy for antiangiogenic cancer therapy. However, current metronomic chemotherapy mainly focuses on free small-molecule drugs, without any effort to achieve tumor-specific biodistribution, which may lead to long-term toxicity concerns. Metronomic chemotherapy using nanoparticula...
متن کاملEnabling Anticancer Therapeutics by Nanoparticle Carriers: The Delivery of Paclitaxel
Anticancer drugs, such as paclitaxel (PTX), are indispensable for the treatment of a variety of malignancies. However, the application of most drugs is greatly limited by the low water solubility, poor permeability, or high efflux from cells. Nanoparticles have been widely investigated to enable drug delivery due to their low toxicity, sustained drug release, molecular targeting, and additional...
متن کاملNanoparticle-assisted combination therapies for effective cancer treatment.
Combination chemotherapy and nanoparticle drug delivery are two areas that have shown significant promise in cancer treatment. Combined therapy of two or more drugs promotes synergism among the different drugs against cancer cells and suppresses drug resistance through distinct mechanisms of action. Nanoparticle drug delivery, on the other hand, enhances therapeutic effectiveness and reduces si...
متن کاملChemoRad nanoparticles: a novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation.
AIM The development of chemoradiation - the concurrent administration of chemotherapy and radiotherapy - has led to significant improvements in local tumor control and survival. However, it is limited by its high toxicity. In this study, we report the development of a novel NP (nanoparticle) therapeutic, ChemoRad NP, which can deliver biologically targeted chemoradiation. METHOD A biodegradab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 6 شماره
صفحات -
تاریخ انتشار 2015